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The multilevel fast multipole algorithm (MLFMA) is a well known and very successful
method for accelerating the matrix-vector products required for the iterative solution of
Helmholtz problems. The MLFMA has an important drawback, namely its inability to handle
scattering problems with a lot of subwavelength detail due to the low frequency (LF) break-
down of the MLFMA. There is a need to extend the MLFMA to LF, since alternative methods
are less efficient (multipole methods) or hard to implement (spectral methods). In this
paper a new addition theorem will be developed that does not suffer from an LF breakdown.
Instead it suffers from a high-frequency (HF) breakdown. The new method relies on a novel
set of distributions, the so-called pseudospherical harmonics, closely related to the spheri-
cal harmonics. These allow the discretization points and translation operators to be calcu-
lated in closed form. Hence the method presented in this paper allows the easy
implementation of a method that is stable at LF. Furthermore, a combination of the tradi-
tional MLFMA and the new method allows for the construction of a broadband MLFMA.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Integral equations containing the Green function of the Helmholtz equation are a very important class of problems in
fields such as acoustics and electromagnetics. Usually these equations are discretized by means of the method of moments
[1]. The discretized equation can then be interpreted as a linear system of dimension N, where N is the number of basis func-
tions used to discretize the integral equation. A direct solution (for example by means of an LU decomposition) requires
OðN3Þ operations, therefore this approach rapidly becomes impractical for increasing N. Iterative solution methods can be
used to improve on this situation. They only require P matrix-vector multiplications to gradually converge to a solution.
If the problem is well conditioned, P << N. Of course the matrix-vector multiplications still require OðN2Þ operations, such
that solving the problem requires OðPN2Þ operations.

A further reduction in operations count can be achieved by applying a so-called fast multipole method (FMM). These
methods reduce the complexity of a matrix-vector multiplication from OðN2Þ to OðNÞ or OðN ln NÞ. The MLFMA is one such
method, and is very efficient for structures that do not contain much subwavelength geometrical detail. For example, sim-
ulations with tens of millions of unknowns have been performed with parallelized versions of the MLFMA [2,3]. However,
the efficient simulation of structures that do contain a lot of subwavelength geometrical detail is prevented by a phenom-
enon called the LF breakdown. The LF breakdown of the MLFMA [4–6] is not of mathematical origin but is caused by the
inevitable numerical roundoff error on a finite-precision computer. Hence, broadband simulations require the integration
of the MLFMA with another method that efficiently takes care of the subwavelength geometrical detail. In [7] the MLFMA
is used in conjunction with a multipole based method. Although this multipole based method achieves computational
complexity OðNÞ, the translations in this method are not diagonal, resulting in a relatively slow algorithm. In [8,9], an
. All rights reserved.
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FMM based on the spectral representation of the Green function is introduced, which leads to diagonal translation oper-
ators that are stable for all frequencies. Unfortunately the spectral representation of the Green function converges in only
one halfspace, thereby imposing the need for six radiation patterns. This causes the factor hidden in the OðNÞ or OðN ln NÞ
to be quite large. Additionally in [10], where a similar technique is used, it is stated that ‘‘the CPU time requirements of
the scheme are minimized when HF techniques are used wherever possible”. The term ‘HF techniques’ refers to the
MLFMA.

All this obviates the need for an addition theorem that is stable at LF and similar to the one used in the MLFMA. The first
steps in the search for such an addition theorem were taken in the uniform multilevel fast multipole algorithm (UMLFMA)
[11]. In the UMLFMA, the integration path is shifted into the complex plane so as to include more near-field information in
the radiation pattern. However, the translation operators have to be calculated numerically. Also, the complex shift has to be
tweaked manually since no clear prescription is known [6]. Recently a novel method, the nondirective stable plane wave
multilevel fast multipole algorithm (NSPWMLFMA [12]), has been proposed which does not suffer from these drawbacks.
It also uses a shift into the complex plane but instead of numerically constructing the translation operators, they are ob-
tained from a QR decomposition of an analytically known matrix. The discretization points for the radiation patterns are also
selected using QR decomposition, which guarantees a high accuracy. However, the fact that the discretization points are se-
lected using the QR algorithm also destroys any symmetry properties of the discretization points. Therefore, inter- and anter-
polations must be done using dense matrices, making these operations a more costly part of the algorithm for high
accuracies. In this paper a novel addition theorem will be derived that is completely known in closed form, i.e. explicit for-
mulas for the translation operators and discretization points will be given. As in the UMLFMA, a shift of the integration path
into the complex plane will then be used to make it numerically stable at LF. A heuristic algorithm for the calculation of the
complex shift will be given and the limits to the error-controllability will be explored. In addition it will be shown that the
inter- and anterpolations can be performed efficiently using FFTs.

In this paper, the norm of a vector is denoted by the same symbol as the vector, but without boldface: v ¼
ffiffiffiffiffiffiffiffiffiffiffi
v � v
p

. Unit
vectors are denoted with a hat v̂ ¼ v

v. An asterisk denotes complex conjugation. In the MLFMA, the two most important vec-
tors are the translation vector rT and the vector rA (see Fig. 1). The vector rA ¼ ra � rd actually consists of a part coming from
the aggregation ra ¼ R1 � r1 and a part from the disaggregation rd ¼ R2 � r2. The translation vector rT is given by R2 � R1

such that r ¼ r2 � r1 ¼ rA þ rT .

2. A general form of the addition theorem of the MLFMA

The addition theorem of the MLFMA is well known [13]. However, it is not unique in its usefulness to FMM as will be
proven in Subsection 2.1. In fact there may be an infinite number of possible addition theorems, all of which equally valid
for the construction of an FMM (although they might be numerically unstable). In the following subsections three special
cases will be discussed. Two of them will be shown to reduce to known results from the literature, among which the usual
addition theorem of the MLFMA. These two special cases do not allow stable translation operators for LF. The third case is
based on a novel set of distributions, the so-called pseudospherical harmonics, and will be used in the next sections to con-
struct LF-stable translation operators.
Fig. 1. A typical configuration in the MLFMA.
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2.1. A more general addition theorem

The starting point of the derivation is the addition theorem for the spherical Hankel function of the zeroth order and sec-
ond kind
hð2Þ0 ðkrÞ ¼ e�jkr

�jkr
¼
X1
l¼0

ð�1Þlð2lþ 1ÞjlðkrAÞhð2Þl ðkrTÞPlðr̂A � r̂TÞ; ð1Þ
which converges absolutely if rT > rA. This equation can be found in [14], Eqs. (10.1.5) and (10.1.6). The function Plð�Þ is the
Legendre polynomial of degree l, while Yl;mðh;/Þ is a spherical harmonic of degree l and order m. Both are defined in Appen-
dix A. In the following, the infinite sum (1) will be truncated after L, i.e. terms with l > L will be neglected. The truncation
bound L is determined such that the relative error introduced by the truncation of (1) is lower than a given threshold �
ð2Lþ 3ÞjLþ1ðkrAÞjhð2ÞLþ1ðkrTÞj 6 �jhð2Þ0 ðkrTÞj: ð2Þ
To avoid the possibility of using (2) near a zero of the spherical Bessel function, the condition Lþ 1 > krA should be added.
Now consider any set of functions fl;mðh;/Þ such that the following property holds
Dfl;mðh;/ÞY�l0 ;m0 ðh;/Þwðh;/Þdhd/ ¼ dl;l0dm;m0 ; ð3Þ
for some integration domain D and weight distribution wðh;/Þ. By means of (3), (62) and the expansion of a plane wave
e�jkðh;/Þ�rA ¼
X1
l¼0

ð2lþ 1Þj�ljlðkrAÞPlðk̂ðh;/Þ � r̂AÞ; ð4Þ
the spherical Hankel function hð2Þ0 ðkrÞ can be written as
hð2Þ0 ðkrÞ � 1
4p De�jkðh;/Þ�rA TðkrT ; h;/Þwðh;/Þdhd/; ð5Þ
with
TðkrT ; h;/Þ ¼ 4p
XL

l¼0

Xl

m¼�l

j�lhð2Þl ðkrTÞfl;mðh;/ÞY�l;mðhT ;/TÞ; ð6Þ
and kðh;/Þ ¼ kk̂ðh;/Þ, with k̂ðh;/Þ ¼ cos / sin hx̂þ sin / sin hŷ þ cos hẑ and k the wavenumber. Three valid choices for fl;m, D
and w will now be given. The first two have already been described in the literature and are widely known and used. How-
ever, no simple method exists to make these two translation operators numerically stable at LF. The third choice uses a novel
set of functions, the so-called pseudospherical harmonics, for fl;m. In contrast to the first two choices, the addition theorem
corresponding to this third choice can be made numerically stable for LF.

2.2. Choice 1: the MLFMA

By choosing
fl;mðh;/Þ ¼ Yl;mðh;/Þ; ð7Þ
wðh;/Þ ¼ sin h; ð8Þ
D ¼ ½0;2p� � ½0;p�; ð9Þ
Eq. (5) reduces to the traditional addition theorem of the MLFMA
hð2Þ0 ðkrÞ � 1
4p

Z 2p

0

Z p

0
e�jkðh;/Þ�rA TðkrT ; h;/Þ sin hdhd/; ð10Þ
with the translation operator being defined as
TðkrT ; h;/Þ ¼
XL

l¼0

ð2lþ 1Þj�lhð2Þl ðkrTÞPlðk̂ðh;/Þ � r̂TÞ: ð11Þ
The addition theorem of the MLFMA is usually discretized using Gauss–Legendre quadrature points [15].

2.3. Choice 2: the MLFMA with uniform discretization

In [16], Sarvas presented an approach corresponding to the following choices
fl;mðh;/Þ ¼
1
2

Yl;mðh;/Þj sin hj; ð12Þ

wðh;/Þ ¼ 1; ð13Þ
D ¼ ½0;2p� � ½0;2p�; ð14Þ
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Proving that this choice satisfies (3) is straightforward when given Eq. (60) of Appendix A. The integration domain runs over
a full period of the integrand in both h and /. Therefore the integration in (5) can be efficiently performed using uniformly
sampled points in both the h and / direction provided that the Fourier series of fl;mðh;/Þ in both h and / are truncated at
bandwidth L (a smoothing operation).
hnh
¼ 2p

Nh
nh;8nh 2 ½1;Nh�; ð15Þ

/n/
¼ 2p

N/
n/;8n/ 2 ½1;N/�; ð16Þ
with Nh ¼ 2Lþ 1. The uniform sampling allows inter- and anterpolations to be done entirely with FFTs. Moreover if N/ is
even, Eq. (60) allows a reduction of the number of discretization points by a factor two, therefore N/ ¼ 2Lþ 2.

2.4. Choice 3: pseudospherical harmonics

We propose the following novel choice
fl;mðh;/Þ ¼
1
2 Ul;mðh;/Þ sin h8m P 0
1
2 ð�1ÞmU�l;�mðh;/Þ sin h8m < 0

(
; ð17Þ

wðh;/Þ ¼ 1; ð18Þ
D ¼ ½0;2p� � ½0;2p�: ð19Þ
The Ul;mðh;/Þ are distributions which are conveniently called ‘‘the pseudospherical harmonics”, defined in Appendix B. Prov-
ing that this choice satisfies (3) is equivalent to proving Theorem B.1 as is done in Appendix B. As in the previous subsection,
the integration in (5) can be efficiently performed using a uniform discretization, this time with N/ ¼ Nh ¼ 2Ld þ 1. The num-
ber of points is calculated based on Ld, not L itself, for reasons that will be explained in Section 3. Also, it will become clear in
Section 4 that a reduction of the number of discretization points, as was possible in Subsection 2.3, is not possible anymore.
Therefore, there is no need to make the number of points in the / direction even, hence N/ ¼ 2Ld þ 1 A uniform discretization
again necessitates a smoothing of Ul;mðh;/Þ sin h to bandwidth Ld. Therefore the Fourier spectrum of Ul;mðh;/Þ sin h will be
determined in Section 3. The special properties of the Fourier spectrum of Ul;mðh;/Þ sin h will then for the first time allow
the construction of analytically known LF-stable translation operators.

3. The pseudospherical harmonics as a fourier series

The addition theorem following from the choice for fl;m, D and w in Subsection 2.4 is
hð2Þ0 ðkrÞ � 1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA TðkrT ; h;/Þdhd/; ð20Þ
with the translation operator
TðkrT ; h;/Þ ¼ 2p sin h
XL

l¼0

j�lhð2Þl ðkrTÞ
Xl

m¼0

sm½Y�l;mðhT ;/TÞUl;mðh;/Þ þ Yl;mðhT ;/TÞU�l;mðh;/Þ�; ð21Þ
with sm ¼ 1� 1
2 dm;0 and the fact that U�l;0ðh;/Þ ¼ Ul;0ðh;/Þ. The uniform discretization proposed in Subsection 2.4 allows the

exact integration of a function with bandwidth 2Ld. Because the translation operator shares this bandwidth with the plane
wave in (20), it must be smoothed to a bandwidth Ld. In practice, this amounts to calculating the Fourier series of
Ul;mðh;/Þ sin h for m P 0, i.e. writing it as
Ul;mðh;/Þ sin h ¼ ejm/
X1

n¼�1
un

l;mejnh ð22Þ
and truncating the summation to the range ½�Ld; Ld�. It is worthwhile to point out that property (66) of Appendix B yields a
condition on the Fourier coefficients, namely
u�n
l;m ¼ ð�1Þmun

l;m: ð23Þ
The calculation of un
l;m can be done by using Theorem C.2
Ul;mðh;/Þ sin h ¼ Kl;mejm/ sinmþ1 h
2mþ1ffiffiffiffi

p
p

X1
p¼0

kp
l;m sin½ðlþmþ 2pþ 1Þh�: ð24Þ
Theorem C.2 is proven and Kl;m is defined in Appendix A, while the coefficient kp
l;m is defined in Appendix C. It is shown in

Theorem C.3 that if kp
l;m is interpreted as limx!pk

x
l;m, then
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kp
l;m ¼ �k�p�l�m�1

l;m : ð25Þ
Furthermore, using (82), it is easily seen that
kp
l;m ¼ 08p 2 ½�l�m;�1�: ð26Þ
As a consequence Eq. (24) can be rewritten as
Ul;mðh;/Þ sin h ¼ �jKl;mejm/ sinmþ1 h
2mffiffiffiffi
p
p

X1
p¼�1

kp
l;mejðlþmþ2pþ1Þh: ð27Þ
Because m P 0 in (21), it is possible to expand sinmþ1 h using the binomial theorem. Absorbing the result into the summation
over p yields the following closed form
un
l;m ¼

1
2

Kl;mð�jÞmffiffiffi
p
p

Pmþ1

q¼0
ð�1Þm�q mþ 1

q

� �
k

n�l
2 �q

l;m 8n� l even

0 8n� l odd

8><>: ; ð28Þ
with the binomial coefficient
mþ 1
q

� �
¼ ðmþ 1Þ!

q!ðmþ 1� qÞ! : ð29Þ
The un
l;m satisfy the following curious property

Theorem 3.1. For any integer n, l P 0 and m 2 ½0; l� the following holds
un
l;m ¼ 08l > jnj: ð30Þ
Proof. The inequality l > jnj and the summation bounds for q in Eq. (28) yield the following two inequalities
� l <
n� l

2
< 0; ð31Þ

�m� 1 6 �q 6 0: ð32Þ
The sum of Eqs. (31) and (32) yields
�l�m� 1 <
n� l

2
� q < 0; ð33Þ
which proves by means of Eq. (26), that all the terms in summation (28) are zero, concluding the proof. h

It can also be verified that un
l;m diverges as a function of n if m > 2. However, as mentioned before, the pseudospherical

harmonics are distributions, therefore (22) does not have to converge. Provided the distribution is integrated with a function
that has a Fourier spectrum that decays fast enough to compensate the divergence, a well-defined result is obtained. Equa-
tion (28) makes it easy to calculate the smoothed translation operator
eT ðkrT ; h;/Þ ¼ 2p
XLd

n¼�Ld

XL

m¼0

XL

l¼m

j�lhð2Þl ðkrTÞsm � ½Y�l;mðhT ;/TÞejm/ þ Yl;mðhT ;/TÞe�jm/�un
l;mejnh; ð34Þ

¼
XLd

n¼�Ld

XL

m¼�L

2p
XL

l¼jmj
j�l�mþjmjhð2Þl ðkrTÞY�l;mðhT ;/TÞun

l;jmj

" #
ejnhejm/: ð35Þ
Using Theorem 3.1, the innermost summation can be truncated
eT ðkrT ; h;/Þ ¼
XLd

n¼�Ld

XL

m¼�L

2p
Xminðjnj;LÞ

l¼jmj
j�l�mþjmjhð2Þl ðkrTÞY�l;mðhT ;/TÞun

l;jmj

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tn;m

ejnhejm/: ð36Þ
The two outer sums can be performed using the FFT algorithm, due to the uniform discretization. Assuming that Ld does not
differ too much from L, the calculation of the smoothed translation operator eT ðkrT ; h;/Þ requires the evaluation of un

l;m in
OðL3Þ different arguments. The evaluation of un

l;m itself costs OðLÞ operations hence the calculation of the smoothed transla-
tion operator is dominated by the OðL4Þ scaling of calculating the various un

l;m. Although this problem is not that severe be-
cause the un

l;m can be reused for all the different translation directions, in Appendix D we supply a more efficient recursive
calculation method that yields an OðL3Þ calculation of all required un

l;m.
Using the uniform discretization from Eqs. (15) and (16), the smoothed translation operator can be directly

discretized
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hð2Þ0 ðkrÞ � p
NhN/

XNh

nh¼1

XN/

n/¼1

eT ðkrT ; hnh ;/n/
Þe�jkðhnh

;/n/
Þ�rA : ð37Þ
An error analysis will now be performed to control the discretization error and determine the value of Ld. In this analysis the
effects of roundoff error will be ignored, a subject being studied in the next section. The uniform discretization exactly inte-
grates every function of bandwidth 2Ld. Because in the translation operator, the spectrum of pseudospherical harmonics has
been truncated to bandwidth Ld, the orthogonality property (B.1) between pseudospherical harmonics and spherical har-
monics holds after discretization if l2 6 Ld. The plane wave, however, contains spherical harmonics with all orders, such that
this inequality will be violated. Therefore, (37) becomes
hð2Þ0 ðkrÞ�
XL

l¼0

ð�1Þlð2lþ1ÞjlðkrAÞhð2Þl ðkrTÞPlðr̂A � r̂TÞþ
p

NhN/

XNh

nh¼1

XN/

n/¼1

eT ðkrT ;hnh
;/n/
Þ�

X1
l¼Ldþ1

ð2lþ1Þj�ljlðkrAÞPlðk̂ðhnh
;/n/
Þ � r̂AÞ:

ð38Þ
Since L has been chosen to satisfy (1) with an accuracy �, we can conclude that the second term must be reduced below the
same accuracy threshold to safeguard the error-controllability of the method. In the MLFMA, this condition is automatically
satisfied because the Fourier series of spherical harmonics converges. In the method proposed here, however, the diverging
nature of the Fourier series of the pseudospherical harmonics blows up the second term. However, it can be suppressed by
choosing Ld sufficiently large. Indeed, without taking into account numerical roundoff error, it is possible to make this term
arbitrarily small because the lowest order spherical Bessel function is jLdþ1ðkrAÞ, which converges super-exponentially if
Ld > krA. For the same reason the value of Ld approaches L if the frequency drops. For situations where krA has a value around
or above unity, however, the difference between Ld and L can be significant. Numerical experiments can be used to determine
a suitable value for Ld by starting at Ld ¼ Lþ 1 and gradually increasing Ld. For this the translation operator with translation
direction êx should be used. This choice can be understood by looking at translations close to the z-axis. Indeed, for these
translations the factor sinjmj hT contained within Y�L;mðhT ;/TÞ becomes dominant over the diverging behavior of un

l;m. Hence,
their Fourier spectrum does not increase as fast as the Fourier spectrum of other translation operators. For translations
far enough away from the z-axis, this suppression of the divergence becomes less and less strong, and disappears completely
in the xy-plane (where hT ¼ p

2). Therefore the translations in the xy-plane should have approximately the fastest increasing
Fourier spectrum, yielding a worst case scenario for the determination of Ld. To avoid having to take into account the various
possible rA, the following inequality is useful
Xl

m¼�l

al;mYl;mðh;/Þ
�����

����� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

m¼�l

jal;mj2
vuut : ð39Þ
As a consequence, when al;m is defined as
al;m ¼ j�ljlðkrAÞ
4p2

NhN/

XNh

nh¼1

XN/

n/¼1

eT ðkrT êx; hnh ;/n/
ÞYl;mðhnh ;/n/

Þ; ð40Þ
the following inequality must be satisfied to obtain a relative accuracy �
X1
l¼Ldþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

m¼�l

jal;mj2
vuut < �jhð2Þ0 ðkrÞj: ð41Þ
4. A normalized translation operator

The translation operator derived in the previous section is neither LF-stable nor HF-stable. The instability for the HF case
is caused by the exponential divergence of un

l;m as a function of n and cannot be easily remedied. However, for the LF case L
becomes fixed as the frequency drops, and the numerical instability associated with the diverging un

l;m becomes fixed as well.
The instability due to the super-exponential increase of the spherical Hankel functions, on the other hand, becomes more and
more of a problem as the frequency drops. In this section the elimination of this LF instability of the translation operator will
be discussed.

The smoothed translation operator as it was derived in the previous Section (36) has two very peculiar properties. First,
the spectrum tn;m is zero whenever j m j>j n j or j m j> L so that when a dot is placed at every nonzero Fourier coefficient an
hourglass shaped figure is obtained. Second, the coefficient tn;m contains only Hankel functions of order jnj or lower. These
properties are not shared by the translation operators of 2.2 and 2.3. They will enable us to construct a translation operator
that remains valid at very low frequencies and even has a DC limit. The drawback is a failure due to numerical roundoff error
at HF.
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The first part of the derivation entails a further manipulation of the smoothed translation operator. Consider a translation
operator defined as follows
bT ðkrT ; h;/Þ ¼
XLd

n¼0

XL

m¼�L

2sntn;mejnhejm/: ð42Þ
Note that the summation over n starts at 0 instead of �Ld. We will call bT ðkrT ; h;/Þ the triangular translation operator, since
its spectrum is more or less triangle shaped. It is easily seen that this translation operator is a valid one for use in (20) since
the plane wave e�jkðh;/Þ�rA is invariant under the transformation ðh;/Þ ! ð2p� h;/þ pÞ and ð�1Þmt�n;m ¼ tn;m
1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA bT ðkrT ; h;/Þdhd/ ð43Þ

¼ 1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA

XLd

n¼0

XL

m¼�L

tn;mejnhejm/dhd/ ð44Þ

þ 1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA

XLd

n¼1

XL

m¼�L

tn;mejnhejm/dhd/; ð45Þ

¼ 1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA

XLd

n¼0

XL

m¼�L

tn;mejnhejm/dhd/ ð46Þ

þ 1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA

X�1

n¼�Ld

XL

m¼�L

ð�1Þmt�n;mejnhejm/dhd/; ð47Þ

¼ 1
4p

Z 2p

0

Z 2p

0
e�jkðh;/Þ�rA eT ðkrT ; h;/Þdhd/: ð48Þ
The second part of the derivation of LF-stable translation operators consists of shifting the integration path along the h direc-
tion into the complex plane
hð2Þ0 ðkrÞ � 1
4p

Z 2p

0

Z 2pþjv

jv
e�jkðh;/Þ�rA bT ðkrT ; h;/Þdhd/: ð49Þ
Fig. 2 shows the old and new integration paths, i.e. C0 and C2, respectively. The integrated function is analytical, hence the
contributions from C0 and C1 þ C2 þ C3 are equal. The integrated function is also periodic with period 2p, hence the contri-
butions from C1 and C3 cancel each other, legitimating the shift in Eq. (49). A shift into the complex plane simply multiplies
the Fourier coefficients 2sntn;m with a factor e�nv. The two outer sums in (42) can thus still be performed using the FFT algo-
rithm. A side effect of the complex shift is that the symmetry of the plane wave under the transformation
ðh;/Þ ! ð2p� h;/þ pÞ can no longer be used to reduce the number of points in a radiation pattern. Indeed, ðhþ jv;/Þmaps
into ð2p� h� jv;/þ pÞ which is not a point in the integration domain.

In order to make Eq. (49) numerically stable for low frequencies, the complex shift must be tailored to compensate the
divergent behavior of the spectrum of the triangular translation operator. In [12], a similar problem is encountered. How-
ever, only translations in the z-direction were stabilized. For this special case, the value of v was chosen by imposing the
condition that, after the application of the complex shift, no Fourier coefficient (of the translation operator) should have a
magnitude larger than the magnitude of the lowest order coefficient t0;0. The aim of this was to avoid that the highest order
coefficients, which contribute the least in the addition theorem, numerically overwhelm the low order terms. A similar rea-
soning will be applied here, with the generalization that the selected value of v must work for all translation directions. We
propose the following algorithm for calculating v:
1: Calculate 2sntn;m;8n 2 ½0; Ld�;m 2 ½�L; L� for a translation vector rT ¼ rmin
T êx .

2: Determine the maximum over all m: tn ¼maxmðj2sntn;mjÞ;8n 2 ½0; Ld�.
3: v = 0
4: repeat
5: Determine nmax such that jtnmax jP jtnj;8n 2 ½0; Ld �
6: if nmax ¼ 0 then
7: d ¼ 0
8: else
9: d ¼ 1

nmax
ln j tnmax

t0
j

10: end if
11: tn ¼ e�ndtn;8n 2 ½0; Ld�
12: v ¼ vþ d
13: until jdj < s
14: return v
with s a small number (e.g. 10�12 in double precision), for determining whether jdj is close enough to zero. Upon termination
this algorithm yields a complex shift that is suitable for all translations in the xy-plane, since the chosen translation direction



Fig. 2. Shifting the integration path C0 into the complex plane. The new integration path is C2.
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is êx and j2sntn;mj does not depend on /T . It can, however, also be used for the other translation directions. This can be under-
stood by means of the same argument as the one used for the calculation of Ld. The translations in the xy-plane usually have
the Fourier coefficients with the largest magnitude, hence the value of v obtained by means of the algorithm can be used for
the other translations too. Although this argument is tenuous and does not actually prove that the selected v also works for
translation directions that are neither close to the xy-plane nor to the z-axis, numerical experiments (see Section 6) indicate
that it is at least approximately valid.

The translation distance used in the algorithm is rmin
T . The superscript min is introduced to indicate that the shortest trans-

lation distance should be used. If (49) is used in an MLFMA-like algorithm, many different translation distances are encoun-
tered. As was explained in [12], the shortest used translation distance should in this case be used in the calculation of v. This
rule stems from the fact that the shortest translation requires the most near-field information. Therefore, if v is adequate for
the shortest translation, the longer translations should also be accurate.

5. Transitions between levels

In a full multilevel scheme, a procedure must be devised for calculating the radiation pattern of a box on level pþ 1 from
the radiation patterns of its child boxes on level p. In the usual MLFMA this procedure boils down to an interpolation of the
radiation pattern. The transposed procedure, corresponding to an anterpolation in the usual MLFMA, is required while going
down in the tree. The method proposed here has, in the LF case, an almost constant number of samples. However, procedures
similar to inter- and anterpolations are still necessary because the value of the complex shift v changes between levels. We
will call these the extrapolations, since the integration domains ½0;2p� � ½0;2p� þ jvp and ½0;2p� � ½0;2p� þ jvpþ1 are disjoint,
where vp is the value of the complex shift on level p. As was noted in [6], these extrapolations can be done using the FFT
algorithm. However, this turned out to be significantly less accurate than a procedure based on least-squares fits. The
least-squares technique, however, has the disadvantage that dense matrices need to be multiplied. In the following we will
propose an modified FFT based method that allows accurate extrapolations. This allows for a very efficient transition be-
tween the levels.

Let Wðhþ jvp;/Þ be the radiation pattern of a box on level p, discretized with 2Lp
d þ 1 points in h and /. Then the extrap-

olation starts with the calculation, by means of FFT, of the spectrum of Wðhþ jvp;/Þ
Wðhþ jvp;/Þ ¼
XLp

d

n¼�Lp
d

XLp
d

m¼�Lp
d

cn;mejnh�nvp ejm/ ¼
XLp

d

n¼�Lp
d

XLp
d

m¼�Lp
d

dp
n;mejnhejm/ ð50Þ
The spectrum cn;m can be seen as the spectrum of Wðh;/Þ. Because Wðh;/Þ ¼ Wð2p� h;/þ pÞ, this spectrum satisfies the fol-
lowing property
cn;m ¼ ð�1Þmc�n;m: ð51Þ

Also, dp

n;m ¼ cn;me�nvp . This means that the spectrum dp
n;m of Wðhþ jvp;/Þ has a large magnitude for negative n and a small

magnitude for positive n. From this it immediately follows that dp
jnj;m is known with much less accuracy than dp

�jnj;m. It
now turns out that changing v actually amplifies these errors. Indeed, the effect of the changing the complex shift from
vp to vpþ1 is that the spectrum dp

n;m is multiplied with enðvp�vpþ1Þ. Since vp > vpþ1, this blows up the small dp
n;m and shrinks

the large dp
n;m. Hence the large relative error on the small coefficients is amplified as well. This can be avoided by explicitly

using the symmetry relation (51), leading to the following formula
dpþ1
n;m ¼

n 6 0 : dp
n;menðvp�vpþ1Þ

n > 0 : ð�1Þmdp
�n;me�nðvpþvpþ1Þ

(
ð52Þ
In this way, the entire spectrum of Wðhþ jvpþ1;/Þ is calculated from dp
n;m with negative n. Hence they are known with a good

accuracy. The radiation pattern on level pþ 1 can then be obtained by means of FFTs.
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When going down in the tree, the transposed extrapolation must be used. This transpose can be taken by writing all oper-
ations (FFTs, calculation of dpþ1

n;m with (52)) as the multiplication of a matrix and taking the transpose of the entire product.
The computational cost of this procedure is the same as the original extrapolation, since the Fourier matrix is its own
transpose.

6. Numerical results

6.1. Single level results

In the previous sections, a closed form expression for the translation operator was derived, as well as a way to determine
the parameters L, Ld and v. In this section we will investigate how well this ensemble of methods works. All calculations were
carried out in Matlab, in double precision. In the first test the frequency is varied for a fixed configuration of boxes. The used
configuration is the one seen in Fig. 1, except that there are sources on all the vertices R1 � rp

a of box 1 and receivers on all the
vertices R2 � rq

d of box 2. The 64 interactions are all calculated both directly and using the addition theorem. The maximum
relative error (over the 64 interactions) is then calculated as
D ¼ max
pq

p
PNh

nh¼1

PN/

n/¼1

bT ðkrT ; hnh þ jv;/n/
Þe�jkðhnh

þjv;/n/
Þ�ðrTþrp

a�rq
d
Þ

NhN/hð2Þ0 ðkjrT þ rp
a � rq

djÞ
� 1

����������

����������
: ð53Þ
The sides of the boxes are 1 m. The maximum relative error is shown in Fig. 3, for various target accuracies �. It can be seen
that the error is always below the target acuracy, except for the rightmost points on the curve with target accuracy 10�8. This
failure can be traced back to the HF-breakdown of the addition theorem. This breakdown is seen earliest in the highest-accu-
racy curve because both L is higher and smaller errors are visible. However, at the highest shown frequency the boxes have a
side of 1.6 wavelengths, which is already quite large for a method which is essentially HF unstable. For comparison, Fig. 4
shows the maximum relative error is when the usual MLFMA is used. It is clear that the MLFMA is not error controllable
for LF. However, for not too high accuracies, the error-controllability regions of the MLFMA and the novel method overlap.
This opens up the possibility of making a switch to the MLFMA with uniform discretization, once the boxes reach a certain
size, yielding a broadband method. It is worthwhile to point out that increasing the number of buffer boxes (the boxes that
are considered too near to be treated with the addition theorem on a certain level) increases the size of the overlap. Also,
increasing the number of buffer boxes allows an overlap to be found for higher accuracies. Further discussion of this overlap
falls outside the scope of this contribution.

The results shown in Fig. 3 demonstrate that the proposed mechanisms for determining L, Ld and v are adequate if used
for one translation. In the second test we will show that these parameters also work when many different translations have
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Fig. 3. The maximum relative error D as a function of frequency.
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Fig. 4. The maximum relative error D as a function of frequency for the MLFMA.
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to be performed, as is the case in an FMM. Since the calculation of both Ld and v was based on translations in the xy-plane, we
will be mostly interested in the error-controllability of the method for hT differing much from p

2. The translations under con-
sideration are therefore defined by the following formula
rT ¼ rmin
T 1þ nr

4

� �
sin

pnt

30

� �
êx þ cos

pnt

30

� �
êz

h i
; 8nr 2 ½0;4�;nt 2 ½0;30�: ð54Þ
and shown in Fig. 5. A further reason to omit a dependence on /T is that the values of Ld and v do not depend on /T , even if
we would use a general translation operator in the xy-plane for their calculation. In addition, both the simple dependence on
/T of the translation operator and numerical tests indicate that the error is relatively invariant under rotations around the z-
axis. The accuracy results are summarized in Fig. 6a and b. For both figures the target accuracy was 10�5, the sides of the
boxes were 1 m and the shortest translation distance rmin

T was 3 m. The frequency for Fig. 6a was 4.77 kHz, while the fre-
quency for Fig. 6b was 239 MHz. This leads to the parameters L ¼ 20, Ld ¼ 21 and v ¼ 11:51098 for Fig. 6a and L ¼ 24,
0 50 100 150

10−12

10−10

10−8

10−6

10−4

10−2

rT = 3.00
rT = 3.75
rT = 4.50
rT = 5.25
rT = 6.00

(degrees)

M
ax

im
um

re
la

tiv
e

er
ro

r

0 50 100 150

10−12

10−10

10−8

10−6

10−4

10−2

rT = 3.00
rT = 3.75
rT = 4.50
rT = 5.25
rT = 6.00

(degrees)

M
ax

im
um

re
la

tiv
e

er
ro

r

a

b

Fig. 6. The maximum relative error as a function of hT .



Ld ¼ 32 and v ¼ 1:03578 for Fig. 6b. From these figures, it is clear that the accuracy requirements are fulfilled for all the
tested translations. Therefore, this validates the heuristic algorithms devised for calculating Ld and v and shows the useful-
ness of the new addition theorem in an FMM.

6.2. Multi level results

The extrapolation procedure outlined in Section 5 and its transpose were also implemented in Matlab and tested on a
geometry as shown in Fig. 7. The largest boxes have sides 1 m, the frequency is 477 MHz and the target accuracy is 10�6.
The largest boxes are divided nlevel � 1 times and the error of the addition theorem is again calculated as the maximum error
over the 64 combinations of vertices. Table 1 shows the obtained accuracy for various numbers of levels. These results clearly
demonstrate the error-controllability of the total algorithm.

7. Conclusion

A novel plane wave addition theorem has been presented. It was constructed by judiciously replacing spherical harmonics
in the translation operator of the MLFMA with pseudospherical harmonics. Although these novel distributions have a diverg-
ing Fourier spectrum, truncation of the spectrum yields a finite and valid translation operator. However, the divergence of
the spectrum makes it impossible to choose the truncation bound arbitrarily large, leading to an HF numerical instability. A
fast algorithm for calculating the Fourier spectrum has been provided. For LF, the specific form of the Fourier spectrum of the
pseudospherical harmonics has allowed us to find a complex shift that is capable of compensating most of the divergence of
the spherical Hankel function, thereby eliminating the LF instability. In addition, the transitions between levels can be done
very efficiently using FFTs. To the best knowledge of the authors, this is the first analytically known plane wave addition
theorem that is numerically stable in the quasi static regime. Moreover, the numerical results show that it is error control-
lable for sufficiently high frequencies. Therefore a hybrid method with the usual MLFMA is straightforward, yielding a broad-
band method.
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Appendix A. The spherical harmonics

The Legendre polynomials PlðxÞ are defined as
PlðxÞ ¼
1

2ll!

dl

dxl
ðx2 � 1Þl; ð55Þ
The spherical harmonics Yl;mðh;/Þ used in this paper are defined as
Yl;mðh;/Þ ¼ Kl;mejm/ sinm h

2ll!

1
sin h

d
dh

� �lþm

sin2l h; ð56Þ
with integers l and m so that l 2 ½0;1� and m 2 ½�l; l�. Furthermore
Kl;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
: ð57Þ
Using (56), the following properties of the spherical harmonics of real arguments are easily proven:
ð�1ÞmYl;�mðh;/Þ ¼ Y�l;mðh;/Þ; ð58Þ

Yl;mðp� h;/þ pÞ ¼ ð�1ÞlYl;mðh;/Þ; ð59Þ
Yl;mð2p� h;/þ pÞ ¼ Yl;mðh;/Þ: ð60Þ
The spherical harmonics satisfy the following orthogonality relation
Z 2p

0

Z p

0
Yl1 ;m1

ðh;/ÞY�l2 ;m2
ðh;/Þ sin hdhd/ ¼ dl1 ;l2 dm1 ;m2 : ð61Þ
Also, the spherical harmonics satisfy
Plðcos cÞ ¼ 4p
2lþ 1

Xl

m¼�l

Y�l;mðh1;/1ÞYl;mðh2;/2Þ; ð62Þ
with
cos c ¼ cos h1 cos h2 þ sin h1 sin h2 cosð/1 � /2Þ: ð63Þ
Appendix B. The pseudospherical harmonics

The so-called pseudospherical harmonics Ul;mðh;/Þ used in this paper are defined as
Ul;mðh;/Þ ¼ Klmejm/ sinm h

2ll!

1
sin h

d
dh

� �lþm

½SðhÞ sin2l h�; ð64Þ
with SðhÞ ¼ j sin hj
sin h a piecewise constant function that has value þ1 for h 2�0;p½ and has value �1 for h 2�p;2p½. The derivatives

in (64) must be interpreted in a distributional sense, since Ul;mðh;/Þ contains Dirac delta distributions and derivatives there-
of. Therefore the pseudospherical harmonics only have meaning when they are integrated with sufficiently smooth
functions.

The following properties of the pseudospherical harmonics are very similar to properties (59) and (60) of the spherical
harmonics
Ul;mðp� h;/þ pÞ ¼ ð�1ÞlUl;mðh;/Þ; ð65Þ
Ul;mð2p� h;/þ pÞ ¼ �Ul;mðh;/Þ: ð66Þ
However, property (58) nor an orthogonality relation like (61) exist for the pseudospherical harmonics. Instead the following
orthogonality relation holds

Theorem B.1. For any integers l1; l2 and m1;m2 satisfying lj P 0 and �lj 6 mj 6 lj the following holds
Z 2p

0

Z 2p

0
Ul1 ;m1

ðh;/ÞY�l2 ;m2
ðh;/Þ sin hdhd/ ¼ 2dl1 ;l2 dm1 ;m2 : ð67Þ
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Proof. To prove this, first replace Y�l2 ;m2
ðh;/Þ by ð�1Þm2 Yl2 ;�m2 ðh;/Þ and integrate over /
Z 2p

0

Z 2p

0
Ul1 ;m1 ðh;/ÞY

�
l2 ;m2
ðh;/Þ sin hdhd/ ð68Þ

¼ 2pdm1;m2ð�1Þm2
Kl1 ;m1

2l1 l1!

Kl2 ;�m2

2l2 l2!
ð69Þ

�
Z 2p

0

1
sin h

d
dh

� �l1þm1

½SðhÞ sin2l1 h� 1
sin h

d
dh

� �l2�m1

½sin2l2 h� sin hdh: ð70Þ
Repeated partial integration yields an integral that is well-defined
2pdm1;m2ð�1Þl1 Kl1 ;m1

2l1 l1!

Kl2 ;�m2

2l2 l2!

Z 2p

0
SðhÞ sin2l1 h

1
sin h

d
dh

� �l2þl1

½sin2l2 h� sin hdh: ð71Þ
The definition of SðhÞ is then used to obtain an integral that is very similar to the orthogonality integral of the spherical
harmonics
2pdm1;m2ð�1Þl1 Kl1 ;m1

2l1 l1!

Kl2 ;�m2

2l2 l2!

Z 2p

0
sin2l1 h

1
sin h

d
dh

� �l2þl1

½sin2l2 h�j sin hjdh ð72Þ

¼ 2pdm1;m2ðð�1Þl1 þ ð�1Þl2 ÞKl1 ;m1

2l1 l1!

Kl2 ;�m2

2l2 l2!
�
Z p

0
sin2l1 h

1
sin h

d
dh

� �l2þl1

½sin2l2 h� sin hdh ð73Þ

¼ ð1þ ð�1Þl1þl2 Þ
Z 2p

0

Z p

0
Yl1 ;m1

ðh;/ÞY�l2 ;m2
ðh;/Þ sin hdhd/ ð74Þ

¼ ð1þ ð�1Þl1þl2 Þdl1 ;l2 dm1 ;m2 ¼ 2dl1 ;l2 dm1 ;m2 : ð75Þ
This conludes the proof of (67). h
Appendix C. Useful properties of the pseudospherical harmonics

In this appendix, some properties will be proven that are necessary for calculating the Fourier spectrum of the pseudo-
spherical harmonics. The so-called Gamma function Cð�Þwill be extensively used. The most often used property of this func-
tion is xCðxÞ ¼ Cðxþ 1Þ. See chapter 6 in [14] for the definition and more information about the Gamma function. First we
will prove the following theorem

Theorem C.1. For any integer l satisfying l P 0 the following holds
SðhÞ sin2l h ¼ 2ð�1ÞlCð2lþ 1Þ
22lp

X1
p¼0

C p� lþ 1
2

	 

C pþ lþ 3

2

	 
 sin½ð2pþ 1Þh� ð76Þ
Proof. It is easily verified that the result holds for l ¼ 0. It then remains to be proven from induction that if (76) is correct
for a certain l P 0, it is correct for lþ 1. Therefore the product of the right hand side of (76) with sin2 h must be
investigated:
sin2 h
2ð�1ÞlCð2lþ 1Þ

22lp

X1
p¼0

Cðp� lþ 1
2Þ

C pþ lþ 3
2

	 
 sin½ð2pþ 1Þh� ¼ ð�1ÞlCð2lþ 1Þ
22lþ1p

X1
p¼0

C p� lþ 1
2

	 

C pþ lþ 3

2

	 
� f2 sin½ð2pþ 1Þh�

� sin½ð2pþ 3Þh� � sin½ð2p� 1Þh�g: ð77Þ
The factor sin2 h was absorbed using the product formulas for the sine function. We proceed by splitting the result into three
separate sums, with the first containing sin½ð2pþ 1Þh�, the second containing sin½ð2pþ 3Þh� and the third containing
sin½ð2p� 1Þh�. In the second and third sum, the substitutions p! p� 1 and p! pþ 1 are, respectively made. By using the
identity
C �lþ 1
2

	 

C lþ 3

2

	 
 ¼ �C �l� 1
2

	 

C lþ 1

2

	 
 ; ð78Þ
the excess term in the third sum can be absorbed into the second sum. The three sums can then again be combined into one
sum which is easily simplified to
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sin2 h
2ð�1ÞlCð2lþ 1Þ

22lp

X1
p¼0

C p� lþ 1
2

	 

C pþ lþ 3

2

	 
 sin½ð2pþ 1Þh� ¼ � ð�1ÞlCð2lþ 1Þ
22lþ1p

X1
p¼0

2ðlþ 1Þð2lþ 1Þ
C p� l� 1

2

	 

C pþ lþ 5

2

	 
 sin½ð2pþ 1Þh�

ð79Þ

¼ 2ð�1Þlþ1Cð2ðlþ 1Þ þ 1Þ
22ðlþ1Þp

X1
p¼0

C p� ðlþ 1Þ þ 1
2

	 

C pþ ðlþ 1Þ þ 3

2

	 
 sin½ð2pþ 1Þh�; ð80Þ
which concludes the proof. h

Now we move on to proving the wanted equality

Theorem C.2. For any integers l and m satisfying l P 0 and �l 6 m 6 l the following holds
1
sin h

d
dh

� �lþm

½SðhÞ sin2l h� ¼ 2lþmþ1Cðlþ 1Þffiffiffiffi
p
p

X1
p¼0

kp
l;m sin½ðlþmþ 2pþ 1Þh�; ð81Þ
with
kp
l;m ¼

C pþmþ 1
2

	 

Cðlþmþ pþ 1Þ

C mþ 1
2

	 

C lþ pþ 3

2

	 

Cðpþ 1Þ

: ð82Þ
Proof. This proof will also be done using induction. By means of Theorem C.1 and
Cðlþ 1Þ
C �lþ 1

2

	 
 ¼ ð�1ÞlCð2lþ 1Þ
22l ffiffiffiffi

p
p ; ð83Þ
it is easy to prove (81) for the special case m ¼ �l. Now assume that (81) holds for a certain m 2 ½�l; l½, then we have to prove
that it also holds for mþ 1.
1
sin h

d
dh

� �lþmþ1

½SðhÞ sin2l h� ð84Þ

¼ 1
sin h

d
dh

� �
2lþmþ1Cðlþ 1Þffiffiffiffi

p
p

X1
p¼0

kp
l;m sin½ðlþmþ 2pþ 1Þh� ð85Þ

¼ 2lþmþ1Cðlþ 1Þffiffiffiffi
p
p

sin h

X1
p¼0

ðlþmþ 2pþ 1Þkp
l;m cos½ðlþmþ 2pþ 1Þh�: ð86Þ
The factor ðlþmþ 2pþ 1Þkp
l;m can be dealt with by means of the following identity
ðlþmþ 2pþ 1Þkp
l;m ¼ kp

l;mþ1 � kp�1
l;mþ1: ð87Þ
This identity is still valid in the special case where p ¼ 0 because 1
Cð0Þ ¼ 0. Equation (85) then becomes
2lþmþ1Cðlþ 1Þffiffiffiffi
p
p

sin h

X1
p¼0

ðkp
l;mþ1 � kp�1

l;mþ1Þ cos½ðlþmþ 2pþ 1Þh� ð88Þ

¼ 2lþmþ1Cðlþ 1Þffiffiffiffi
p
p

sin h

X1
p¼0

kp
l;mþ1½cos½ðlþmþ 2pþ 1Þh� � cos½ðlþmþ 2pþ 3Þh��; ð89Þ

¼ 2lþmþ2Cðlþ 1Þffiffiffiffi
p
p

X1
p¼0

kp
l;mþ1 sin½ðlþmþ 2pþ 2Þh�: ð90Þ
which concludes the proof. h

The right hand side of Eq. (81) was based on the right hand side of formula (8.7.1) in [14]. However, to the best knowledge
of the authors, Theorem C.2 has never before been stated or proved.

For completeness, the following property of kp
l;m will also be shown:

Theorem C.3. For any x and any integer p P 0, l P 0 and m 2 ½�l; l� the following holds
lim
x!p
½kx

l;m þ k�x�l�m�1
l;m � ¼ 0: ð91Þ
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Proof. Using the definition (82) for k�x�l�m�1
l;m yields
k�x�l�m�1
l;m ¼

C �x� l� 1
2

	 

Cð�xÞ

C mþ 1
2

	 

C �x�mþ 1

2

	 

Cð�x� l�mÞ

; ð92Þ

¼
sinðpðxþ lþmÞÞ sin pðxþm� 1

2Þ
	 


sinðpxÞ sin p xþ lþ 1
2

	 
	 
 �
C xþmþ 1

2

	 

Cðlþmþ xþ 1Þ

C mþ 1
2

	 

C lþ xþ 3

2

	 

Cðxþ 1Þ

; ð93Þ

¼
sinðpðxþ lþmÞÞ sin p xþm� 1

2

	 
	 

sinðpxÞ sin p xþ lþ 1

2

	 
	 
 kx
l;m: ð94Þ
The following form of the functional equation of the Gamma function was used to obtain this result
Cð�zÞCðzþ 1Þ ¼ � p
sinðpzÞ : ð95Þ
By means of Eq. (94), the limit reduces to
lim
x!p
½kx

l;m þ k�x�l�m�1
l;m � ¼ lim

x!p
kx

l;m 1þ
sinðpðxþ lþmÞÞ sin p xþm� 1

2

	 
	 

sinðpxÞ sin p xþ lþ 1

2

	 
	 
" #
; ð96Þ

¼ kp
l;m 1þ ð�1Þlþm ð�1Þpþmþ1

ð�1Þpþl

" #
¼ 0; ð97Þ
where we used l’Hôspital’s rule. h
Appendix D. A recursive formula

Here we will supply a recurrence formula and an algorithm that can be used for an OðL2Þ calculation of un
l;m, with n; l 2 ½0; L�

and m fixed. The values of un
l;m for negative n can be obtained by means of Eq. (23). The recurrence is proven in the following

theorem:

Theorem D.1. For any integer n, l P 0 and m 2 ½�l; l� the following holds
2lþ 1
2
½~unþ2

l;m þ ~un
l;m� ¼ ðlþmÞ~unþ1

l�1;m þ ðl�mþ 1Þ~unþ1
lþ1;m; ð98Þ
with ~un
l;m ¼

un
l;m

Kl;m
.

Proof. We start with the following identity
2lþ 1
2
½kpþ1

l;m þ kp
l;m� ¼ ðlþmÞkpþ1

l�1;m þ ðl�mþ 1Þkp
lþ1;m: ð99Þ
The proof of this using Eq. (82) is tedious but straightforward. Now we replace p with n�l
2 � q to obtain
2lþ 1
2

k
ðnþ2Þ�l

2 �q
l;m þ k

n�l
2 �q

l;m

� �
¼ ðlþmÞk

nþ1�ðl�1Þ
2 �q

l�1;m þ ðl�mþ 1Þk
nþ1�ðlþ1Þ

2 �q
lþ1;m : ð100Þ� �
Applying the sum operator ð�jÞm
2
ffiffiffi
p
p
Pmþ1

q¼0 ð�1Þm�q mþ 1
q

to this entire equation yields Eq. (98) which concludes the proof. h

For the special case when n ¼ l� 2, Theorem 3.1 reduces the recurrence to the simpler form
~ul
l;m ¼

2ðlþmÞ
2lþ 1

~ul�1
l�1;m: ð101Þ
The following algorithm can now be used to calculate all the ~un
l;m for a fixed m:
1: Calculate ~un
m;m8n 2 ½m; L� and ~un

mþ1;m8n 2 ½mþ 1; L� using the direct formula (28)
2: for l ¼ mþ 2 to L do
3: Calculate ~ul

l;m from ~ul�1
l�1;m by means of (101)

4: end for
5: for h ¼ 0 by 2 to L�m� 4 do
6: for l ¼ mþ 2 to L� h� 2 do
7: n ¼ lþ h
8: Calculate ~unþ2

l;m from ~un
l;m, ~unþ1

l�1;m and ~unþ1
lþ1;m by means of (98)

9: end for
10: end for
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